
Bachelor Physics and Astronomy

Determining suitable models for

C. elegans locomotion by

evaluating Lyapunov exponents

Nardi Lam,
10453555

4 July 2018

Supervisor: Greg Stephens

Signed by: Greg Stephens, Edan Lerner

P
h
y
si
c
s
a
n
d

A
st

ro
n
o
m
y
—

U
v
A
-V

U



Abstract

Building on the discovery that C. elegans locomotive dynamics are governed by an attractor

in a 6-D phase space [1], models that emulate these dynamics are researched. The dynamics are

characterised by the dynamically invariant quantities known as the Lyapunov exponents (LEs),

which for C. elegans form a symmetric Lyapunov spectrum. Two types of models are investigated

in detail: a pair of coupled Nosé-Hoover (N-H) oscillators, and a pendulum driven by a periodic

force.

By comparing the values of the LEs for these models to those obtained from the C. elegans

dynamics, it is shown that a single driven pendulum cannot produce a similarily symmetric spec-

trum and has to be extended in some way. Coupling the N-H oscillators also breaks the symmetry

of the LEs, however, different configurations show a wide range of behavior which indicates they

might be useful if coupled differently.

Populaire samenvatting

In de natuurkunde worden over het algemeen niet-levende objecten onderzocht, zoals een pro-

jectiel of een slinger. Deze vertonen simpel gedrag: ze schieten door de ruimte of ze zwaaien heen

en weer. Het is echter veel ingewikkelder om het gedrag van bijvoorbeeld een dier te beschrijven.

Sommige kleine organismen zijn door biologen uitvoerig onderzocht. Een voorbeeld daarvan is een

millimeter-groot wormpje genaamd C. elegans, waarvan vrijwel het hele lichaam en brein in kaart

is gebracht. Dit wormpje doet niet veel meer dan rondkruipen op zoek naar eten. Desondanks is

het lastig om te omschrijven hóé het precies kruipt. Daarentegen kunnen natuurkundigen wel heel

precies bepalen hoe bijvoorbeeld een ruimteschip op een komeet kan landen. De vraag is: kan een

natuurkundige aanpak ook bij dit soort levende wezens leiden tot meer begrip van hoe ze werken?

Om te begrijpen wat die natuurkundige aanpak is, zal ik een paar begrippen uitleggen. In het

algemeen houdt de natuurkunde zich bezig met het bestuderen van systemen. Dit zijn dingen

in de natuur waarvan je bepaalde eigenschappen kan meten. Meestal blijven deze eigenschap-

pen niet hetzelfde, maar veranderen ze in de loop der tijd. In dat geval hebben we het over een

dynamisch systeem. Denk aan een auto die ergens recht vooruit rijdt: deze bevindt zich op

een bepaalde locatie (lengte- en breedtegraad), en rijdt met een bepaalde snelheid in een bepaalde

richting. Deze rijdende auto kunnen we beschrijven met in totaal 4 eigenschappen (waarvan twee

voor de locatie), ook wel het aantal dimensies genoemd.

Het doel is uiteindelijk om te proberen om de beweging van C. elegans ook te beschrijven als

een dynamisch systeem. Dat is echter nog een heel eind weg. Wel is het mogelijk om al te kijken

naar een aantal algemene aspecten van dit (onbekende) wormsysteem. Zo is ontdekt dat dit sys-

teem met slechts 6 dimensies uit de voeten kan.

Daarnaast zijn bepaalde karakteristieke getallen voor het wormsysteem geschat, de zogenaamde

Lyapunov-exponenten. Deze getallen geven aan hoe veel variatie er in de dynamiek van een



systeem zit. In het geval van de auto is dit als volgt te bepalen: stel we nemen twee auto’s, en

plaatsen deze op twee locaties vlakbij elkaar. Ook zetten we ze in bijna dezelfde richting, maar

met een kleine afwijking. Nu laten we ze allebei rijden, maar één auto net iets sneller dan de

ander.

Als we ze na een lange tijd laten stoppen met rijden, wat is er dan gebeurd? De auto’s reden in

verschillende richtingen, dus hoe langer we ze laten rijden, hoe meer de locaties uit elkaar komen

te liggen. Dat betekent dat bij de twee getallen die bij de locatie horen voor beide een positieve

(groter dan nul) Lyapunov-exponent hoort. De andere eigenschappen, snelheid en richting, zijn

echter niet veranderd en verschillen nog steeds maar een klein beetje voor de twee auto’s. Dat

betekent dat bij deze twee eigenschappen Lyapunov-exponenten gelijk aan nul horen. Het rijdende

auto-systeem heeft dus 4 Lyapunov-exponenten: twee positief en twee gelijk aan nul.

Voor C. elegans is bekend dat het 6 van deze exponenten heeft: twee positief, één gelijk aan

nul en drie negatief. Daarom heb ik twee systemen onderzocht die mogelijk ook zulke exponenten

hebben. Het eerste systeem bestaat uit twee aan elkaar gekoppelde Nosé-Hoover oscillatoren:

een simpel soort slingers die op constante temperatuur gehouden worden. Het tweede systeem is

een normale slinger die door een Van der Pol-oscillator (ook een soort aangepaste slinger) wordt

aangedreven. Deze systemen zijn uitgekozen omdat ze gebaseerd zijn op bekende, slinger-achtige

systemen en daarom niet te lastig zijn om mee te rekenen, maar wel ingewikkeld genoeg zijn om

bijzonder soort gedrag te kunnen vertonen.

Ik heb simulaties van deze systemen gedaan, om zo de exponenten te berekenen. Hieruit blijkt

dat het eerste systeem nogal ingewikkeld in elkaar zit en daardoor veel variatie laat zien in zijn

gedrag. Om duidelijker te bepalen of dit systeem op C. elegans kan lijken moet het daarom verder

beperkt worden. Het tweede systeem is echter goed onder controle te houden, maar daardoor te

beperkt om een zelfde soort selectie aan Lyapunov-exponenten te hebben als het wormsysteem.

Ik denk dat het interessant is om de Nosé-Hoover oscillatoren nog verder te onderzoeken, en om

dat te doen kan op de resultaten die ik hier heb worden voortgebouwd. Ook zijn er nog andere

systemen die interessant zijn om te onderzoeken, zoals een (drie)dubbele slinger.
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CHAPTER 1

Introduction

1.1 The behavior of C. elegans

One of the most extensively studied organisms in biology is the worm

Caenorhabditis elegans (or C. elegans), particularily in the field of neu-

ral biology, as it is one of the simplest organisms with a nervous system,

and it is very suited to examination in experimental settings. As a result,

its nervous system has been entirely mapped [2], and simulated [3].

Figure 1.1: A number of crawling
C. elegans worms imaged by a mi-
croscope. The individual worms
are about 1 mm in length. Seen
from above, we can see that their
body shape is highly variable but
seems semi-sinusoidal in most cases.
This has been corroborated by the
‘eigenworms’-analysis in [4]. Im-
age from ZEISS Microscopy via
WikiMedia Commons (https://
commons.wikimedia.org/wiki/File:
C._elegans,_model_organism_in_
life_sciences_(28703152561).jpg).

A different story emerges when we consider the observable behavior of

the worm. We see it perform a limited set of behaviors, that have been

qualitatively categorized into several discrete behavioral states. However,

what remains not well understood is how the structure of the brain of C.

elegans gives rise to these behaviors. In spite of all efforts of examining

the organism at the lowest level, its apparent liveliness remains an emer-

gent phenomenon, unable to be reduced to the worm’s constituent parts.

And yet, from a qualitative point of view, there are clearly several ‘modes’

of behavior (i.e. forward and backward crawling, turning).

In the work of Greg Stephens et al. [4] an attempt has been made to

understand the behavior in a different way. By quantitatively analyzing

the two-dimensional locomotion of the worm, it has been found that its

posture can be described in a very low dimensional space, which indicates

that the behavior might be understood by investigating the dynamics in

this eigenworm space [4]. While these dynamics are essentially generated

by the neural structure of C. elegans, the main hypothesis of this analysis

is that the emergent behavior can be described as a deterministic system

consisting of fewer parts than neurons in the brain itself.

More generally, it is hypothesized that such complex systems of many

interacting parts, which are perhaps not themselves well-understood,

can be reasonably approximated as relatively simple chaotic dynamical

systems. The ultimate goal would be to formulate a chaotic system of

fewer parts that models the behavior of the complex system well. The
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model complex system in this case is the worm C. elegans: specifically its

autonomous locomotion when left undisturbed.

This project will build upon quantitative analysis that has been per-

formed on the movement of C. elegans [1]. Among the results that have

been obtained from this analysis is the Lyapunov spectrum, which

describes certain characteristics of the dynamics of a system. The aim

of this project is to construct one or more model systems that, when

simulated, generate dynamics that give similar results for the Lyapunov

spectrum. Ideally, these systems would have a clear origin from physics

or other fields of science, so that they have a greater interpretability. This

would make it possible to descibe the dynamics of C. elegans qualitatively

through analogy, which is often useful in physics as it leads to greater

understanding1. 1 As an example, take the elec-
tronic–hydraulic analogy: a
comparison can be made between
water flowing through pipes and
electricity moving through a circuit.
This is because the water is governed
by equations that have the same
shape as the equations governing the
electric charge.
This leads to a intuitive way of

understanding what is happening
in an electric circuit: we talk about
the electricity ‘flowing’ through it,
even though we cannot observe it
doing so, and it is hard to say it is
actually doing so in a literal sense.
Interestingly enough, because of this
correspondence it is aldo possible to
build analog computers that run on
water, e.g. the 1950’s MONIAC.

1.2 Behavior as a physical science

The field of research is which this project takes place is often hard to cat-

egorize. This is because it concerns biological subjects (e.g. the worm),

but is methodically very much like physics. Even more, it could be argued

even the connection to physics is also vague, as it is simply the applica-

tion of mathematical methods to biological phenomena. However, analo-

gies can be made to physics that establish the connection more clearly.

This connection is then mostly found in the methods applied, and how

they are applied: while any (mathematical) science follows a systematic

way of working, the constructs applied here and the way they are applied

are characteristic of the way physics is performed as well.

The study of animal behavior (or ethology) as a physical science is well

outlined in [5]. As mentioned there, the physical way of studying behavior

is based on ‘outside’ observations (e.g. filmed behavior), and thus depen-

dent on advances in computing technology (especially computer vision).

Then, from these observations it is deduced what the relevant information

is, in other words what to measure.

This is already one point that is often lacking in the study of behavior.

As an example, let us look at an analogy to thermodynamics. Right now

we have a quite extensive theory of temperature, for example the temper-

ature of an (idealized) gas. First of all, we know it consists of particles

trapped in a volume with a certain amount of kinetic energy. Then, this

gas can (through collisions) transmit some energy, changing its entropy,

and it is the way in which this happens which determines its tempera-

ture2.

2 Temperature is defined as

T =

[
∂S

∂U

]−1

.

A gas with a high temperature (T)
will give up energy more easily, which
is the same as saying that a small
change in energy (U) will not lead to
a large change in entropy (S), so it
is ‘easy’ for the gas to give up this
energy.

However, this is not how we usually think of temperature: it deter-

mines simply whether something feels hot or cold. This intuitive notion
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of the right macroscopic quantity to measure makes it already possible to

measure it, while not knowing much about the microscopic mechanisms,

as the first thermometers were invented long before any other part of

thermodynamics. However, in the case of behavior the macroscopic quan-

tities to measure are much less clear, and the way of working is generally

the other way around: we have quite a bit of knowledge of the micro-

scopic picture (neurons), but have no quantitative grasp of the macro-

scopic behavior resulting from it. That would be like having a microscopic

description of a gas as moving particles, possibly with a notion of entropy,

but without having any idea of what temperature is. Now imagine some-

one asks you to derive some ‘laws’ that describe what happens in this gas:

where do you start?

So with the research on ‘eigenworms’, an idea of how the observable

behavior of C. elegans should be measured has been formed. The next

question is: what kind of laws govern this behavior? Ultimately, these

should follow from the microscopic description of the brain as well, but

they are only useful if their effects are visible in the observable behavior.

This makes it a good idea to analyze the behavior from a purely macro-

scopic standpoint as well: determining empirical laws before trying to

discover where they come from. Because their is no clear cut way how to

find ‘good’ laws from a set of observations, the idea behind this project is

to look at exsiting systems whose structure has some motivation behind

it, in order to get some inspiration for the kind of laws that could make

the behavior observed in C. elegans emerge.



CHAPTER 2

Theory

2.1 General theory of dynamical systems

In layman’s terms, a dynamical system is “something that moves”.

More generally, it is a system with properties that change as time pro-

gresses. For example, an object that moves through space may be de-

scribed as having a position and a velocity as its dynamical properties.

These properties change over time: ‘movement’ is essentially a change

of position, and the velocity may also change through acceleration. But,

many other systems that “move” in a different way may be described as

dynamical systems as well1. 1 Examples would be the current at a
certain position in a circuit changing
as the voltage is adjusted, or the
population of a species changing due
to environmental circumstances.

The combined properties of an dynamical system with n properties are

often called the state and described by a state vector

x =


x1

x2

...

xn

 ,

where xi, i ∈ {1, ..., n} are the properties of the system. The way in which

these properties change over time is then given by the time derivative

dx

dt
=


ẋ1

ẋ2

...

ẋn

 ≡ ẋ.

also called the flow of the system.

Based on how the time derivative is defined, dynamical systems will be

of one of two types2:

2 The important difference between
these two categories is that au-
tonomous systems are completely
predictable from the current state
only, and so there is no need to know
anything about what has happened
in the past. For non-autonomous sys-
tems, external conditions can make a
difference, for example whether the
system is in a certain state for the
first or the second time. This makes
objective analysis of the behavior
more difficult.

1. Systems in which ẋ can be modeled as a function ẋ(x) of the current

state of the system, also called autonomous systems.
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2. Systems in which ẋ can only be modeled as a function ẋ(x, t) of

both the current state and the current time. These systems are non-

autonomous.

We’ll consider non-autonomous systems, as they are more general.

Let’s say the function f models the time evolution of the system, so that

ẋ = f(x, t). Then there is another way to divide these kind of systems

into two types:

1. Systems in which we can write f as a vector of functions, each having

only of the properties (and time) as input, i.e.

f(x, t) =


f1(x1, t)

f2(x2, t)

...


so that fi(xi, t) = ẋi. As the equations ẋi = fi form a system of

uncoupled differential equations, these systems are called uncoupled

systems.

2. Systems for which the functions fi have the entire state as input, i.e.

f(x, t) =


f1(x, t)

f2(x, t)

...

 .

Here the set of equations xi = fi(x, t) consists of coupled differential

equations and therefore these systems are coupled systems.

In this project we will work with non-autonomous, coupled dynamical

systems of the form:

ẋ =


ẋ1

ẋ2

...

ẋn

 = f(x, t) =


f1(x, t)

f2(x, t)

...

fn(x, t)

 (2.1)

2.1.1 Phase space and attractors

The behavior of dynamical systems can be characterized by analyzing

their phase spaces. The state of a system with n properties lives in an

n-dimensional vector space. If we take states of the system that follow

each other in time, plot them as points in this space, and connect them,

we find a trajectory for the system. This is a path that describes how

the system’s state might change as time passes.

If we collect all possible trajectories, they collectively make up the

phase space of the system. Useful remarks about the qualitative behavior
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of the system can be made from knowing what kind of trajectories oc-

cur in this space, where trajectories go after a large period of time, and

whether they are confined to a certain region in the phase space.

One imporant example of such a region is an attractor. This is a

region in phase space into which nearby trajectories tend to move as time

goes on. To be precise, an attractor is a region in phase space with two

important properties [6]:

1. States contained in the attractor stay within the attractor.

2. There is some region B that is larger than the attractor for which

all contained states move into the attractor eventually. The largest

possible region B is called the basin of attraction.
Figure 2.1: An example of a limit
cycle: the attractor in the Van der
Pol oscillator

f =

[
ẋ

v̇

]
=

[
v

(1− x2)v − x

]

visualized in (x, v) phase space.
All trajectories eventually move
onto the distinctive (non-harmonic)
closed loop. From user XaosBits at
Wikipedia.

Simple examples of attractors include sinks, single states into which

nearby trajectories converge and remain forever, and stable limit cy-

cles, closed loops (i.e. where the trajectory leads back into the same state

after a while) onto which all nearby trajectories spiral eventually. How-

ever, some systems contain attractors with a more complex shape. These

are called strange attractors and occur within systems whose behavior is

classified as chaotic.

2.1.2 Chaotic systems and strange attractors

Chaotic systems are systems whose behavior is very unpredictable,

because trajectories that start out close to each other, only stay close

for a very short time. In other words, initially nearby states diverge very

quickly.

Figure 2.2: A visualiztion of expo-
nential divergence in a system. The
trajectories in phase space starting
from x1 and x2 are initially separated
by δx. The two trajectories then
evolve so that this separation grows
exponentially as a function of time,
mediated by the Lyapunov exponent
λ.

Let’s say the system starts in a state x1 and evolves for a time t into

x′1. If instead we start the system in a state x2 ≡ x1 + δx (where
∥∥∥δx∥∥∥ is

small) and it evolves into x′2, for a chaotic system it is the case that∥∥∥δx′∥∥∥ = |x′2 − x′1| � |x2 − x1| =
∥∥∥δx∥∥∥ .

Usually this divergence is approximately exponential, so that we can write

the distance between points after a long time as∥∥∥δx′∥∥∥ = eλt
∥∥∥δx∥∥∥ (2.2)

where λ is the Lyapunov exponent, which indicates how strong the

divergence is [6]:

λ ≡ 1

t
ln


∥∥∥δx′∥∥∥∥∥∥δx∥∥∥

 . (2.3)

Technically this equation is valid only in the limit t → ∞, in which case

it gives an notion of the average exponential divergence of trajectories per
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time unit. Systems that have a positive Lyapunov exponent for some set

of parameters and initial conditions are classified as chaotic systems.

This exponential divergence of nearby states means the system’s de-

pendence on the initial conditions is very sensitive, and its behavior is

unpredictable because similar scenarios cannot easily be compared, if at

all. Exponential divergence also explains why these systems must have

“strange” attractors: a sink leads to convergence (|x′2 − x′1| = 0) in the

long term, and on a limit cycle the states will remain roughly equally

separated (|x′2 − x′1| ∼ O(δx)) and thus there is no divergence.

Figure 2.3: An example of exponen-
tial divergence: two trajectories in
the Lorenz system

f =

ẋẏ
ż

 =

 σ(y − x)

x(ρ− z)− y
xy − βz


with parameters (σ, ρ, β) =
(10, 28, 8/3). The two trajectories
start out very close, as

δx = ε = 10−5,

but eventually end up quite dissimilar
toward the end. From user XaosBits
at Wikipedia.

Strange attractors are regions in phase space with an interesting geo-

metric structure: they are fractals. This must be the case because of two

seemingly contradictory properties. Let’s say we have a region of initial

states of a chaotic system that are within the basin of attraction of some

attractor. Then it follows that:

1. This region shrinks into a region with zero volume as time passes.

First off, all attractors have zero volume3. For a region of states inside 3 Attractors can only appear in
dissipative systems [6], and thus
∇ · f < 0 and volumes in phase space
will always shrink over time.

the basin of attraction that has a nonzero volume, these states must

move (‘flatten’) onto the attractor and become a subset of the attractor

set, which therefore has also zero volume.

2. This region grows in size exponentially with time.

The behavior of the system is chaotic, which means all the states inside

this region will separate, and the distances between them will grow

exponentially. Thus the size of the set containing the evolution of all

these states will grow exponentially in size.

From this it follows that the attractor, being the object which contains

the evolution of these states for all time, must have both zero volume, but
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also span an infinite distance. Fractals fit the bill, as these are objects

with no volume, but infinite surface area. For this reason the fractal is a

characteristic property for chaotic systems.

A way to understand how these fractals are formed, and thus how

the time evolution of chaotic systems proceeds, is through the analogous

transformations of stretching and folding. Stretching a region in phase

space in one direction separates nearby states, leading to the exponential

divergence. Then, contracting and folding this stretched region onto itself

in the orthogonal subspace reduces the volume, and keeps the full set

within a bounded region. Repeating this process infinitely many times

reduces the ‘thickness’ of the region in at least one direction to zero, and

thus the volume of the set of states goes to zero, while nearby states are

still exponentially seperated.

2.1.3 The spectrum of Lyapunov exponents

Since a chaotic system has exponential divergence of trajectories, and the

Lyapunov exponent indicates how strong this divergence is, it is also a

way to express how chaotic the system is. However, there are in fact n

different Lyapunov exponents for a system with an n-dimensional phase

space, because distance between states might be expanded in one direc-

tion (through stretching) but contracted in another (through folding). In

fact, if there is an attractor, there must always be at least one negative

exponent that makes sure the states stay on the attractor.

The set of all Lyapunov exponents for a system is called the Lya-

punov spectrum. If we only look at how the distance between two

points changes, we instead get the maximum Lyapunov exponent.

A way to formulate this mathematically is by looking at the deforma-

tion of a volume in phase-space. If we take a small m-dimensional region4 4 Where the dimension m ≤ n, so
that it fits in our phase space.

with volume V0 of initial conditions and let it evolve according to the

flow, we can characterize its volume scaling by m different exponents.

Figure 2.4: Two diagrams showing
two distance vectors d1 and d2, the
paralellogram spanned by them and
its area A, at both t = 0 and a later
time ∆t. The vector e2 orthogonal
to d1 is also displayed. These two
vectors span a rectangle that has the
same area A.

To show this, we will look at a two-dimensional example. Consider an

area spanned by two distance vectors d1 and d2 as in Figure 2.4. These

two vectors form a parallelogram with area A. We can calculate this area

if we construct a rectangle with equal area by calculating the vector e2,
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which is equal to d2 minus the projection of d2 onto d1. This makes it

orthogonal to d1, so that they form a rectangle whose area is given by

multiplying their lengths. So if

‖d1‖ ≡ D1∥∥∥d2

∥∥∥ ≡ D2

e2 = d2 −
d2 · d1

d1 · d1

d1

‖e2‖ ≡ E2(d2, d1),

the area A is equal to

A =
∥∥∥d1

∥∥∥ ‖e2‖ = D1 · E2 ≡ A0

Now, if we let the system evolve in time, the distance vectors d1 and d2

will grow according to the (largest) Lyapunov exponent λ1:

‖d1(∆t)‖ = D1e
λ1∆t∥∥∥d2(∆t)

∥∥∥ = D2e
λ1∆t.

To calculate the new area A, we have to calculate a new vector e2. Now,

as in visible in Figure 2.4, e2 has not been scaled by the same factor

eλ1∆t. So if we want to describe how the area of this region in phase

space changes, we also need to describe the growth of the orthogonal

vector e2. To do so we will introduce a second Lyapunov exponent λ2 so

that

‖e2(∆t)‖ ≡ E2e
λ2∆t

and the new area A is equal to

A(∆t) =
∥∥∥d1(∆t)

∥∥∥ ‖e2(∆t)‖

= D1e
λ1∆t · E2e

λ2∆t

= A0 e
(λ1+λ2)∆t,

i.e., it is scaled by the sum of the two Lyapunov exponents.

This idea can be extended to higher-dimensional volumes, with each

one adding an extra orthogonal vector whose growth we can consider and

thus adding an extra exponent. This means the total volume change of

an m-dimensional region with initial volume V0 will be determined by the

(sum of the) m largest Lyapunov exponents:

lim
t→∞

Vm(t) = V0

m∏
i=1

eλit
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lim
t→∞

ln(Vm(t)) = ln(V0) +

m∑
i=1

λit

λ+
i ≡

m∑
i=1

λi

= lim
t→∞

1

t
(ln(Vm(t))− ln(V0))

= lim
t→∞

1

t
ln

(
Vm(t)

V0

) (2.4)

Here we have defined λ+
i to be the sum of the m largest Lyapunov expo-

nents.

The equation for the evolution of the distance between two nearby

points is then given by the 1-dimensional case:

λ+
1 = λ1 =

1

t
ln

(
V1(t)

V0

)
=

1

t
ln

(
d(t)

d0

)
and so, d(t) = d0e

λ1t.

Equations for the individual exponents are obtained by looking at the

difference between an m- and (m−1)-dimensional region, both with initial

volume V0:

λm = λ+
m − λ+

m−1

= lim
t→∞

1

t
(ln(Vm(t))− ln(V0)− ln(Vm−1(t)) + ln(V0))

= lim
t→∞

1

t
ln

(
Vm(t)

Vm−1(t)

) (2.5)

One important result that can be obtained from the Lyapunov spec-

trum is the appearance of a zero-valued exponent. This exponent should

appear in any dynamical system of the form as in Eq. 2.1. This is because

when we analyse the divergence after a short time, two infinitesimally

close states will never diverge in one particular direction: the direction

in which the trajectories are moving at that instant. This is often called

the direction ‘along the flow’. Therefore, the presence of a zero exponent

is a necessary condition for the system to actually be continuous and de-

terministic. If there is no zero exponent, the system is either stochastic

(there is no unique flow direction at every single instant) or discrete (so

it is not well described by a set of dynamical equations, or possibly the

phase space is incomplete).

Systems with more than one positive Lyapunov exponent are often

called hyperchaotic. Because there is exponential divergence in more

than one direction, the behavior will be even harder to predict, as the

deterministic dynamics are visible only at increasingly short time scales

[7].
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2.1.4 Hamiltonian systems

Hamiltonian systems are a category of dynamical systems that are studied

extensively in physics. This is partly because they can easily be used to

describe a system that follows Newton’s laws in a concise way, but they

are also useful for modelling many other situations.

A Hamiltonian system has an even number of properties that come in

pairs of q and p, respectively the generalized coordinate5 and the conju- 5 An analogue of the position of
objects in physical systems.

gate momentum6. Then there is a function H(q, p, ...), called the Hamil- 6 An analogue of the momentum,
essentially the weighted velocity of
objects.

tonian, that relates these pairs of q and p as follows:

∂q

∂t
=
∂H

∂p
or qt = Hp,

∂p

∂t
= −∂H

∂q
or pt = −Hq.

(2.6)

In the language of dynamical systems this means a Hamiltonian system

has the form

ẋ =



q̇1

ṗ1

q̇2

ṗ2

...


= f =



Hp1

−Hq1

Hp2

−Hq2

...


where H = H(x).

2.1.5 Conservative systems

If the Hamiltonian H is not itself a function of time, the relations above

can be used to show that

∂H

∂t
=
∂H

∂q

∂q

∂t
+
∂H

∂p

∂p

∂t
= −∂p

∂t

∂q

∂t
+
∂q

∂t

∂p

∂t
= 0.

This means the system described by H is conservative: the value of H is

constant (conserved) across any trajectory7. 7 In physical systems, the value
of H is usually the total energy of
the system, which means a time-
independent Hamiltonian indicates
there is conservation of energy.

A slightly different but similar scenario is when the Hamiltonian varies

over time, but does so periodically, i.e.

H(x, t) = H(x, t+ T )

where T is its conservation period. Here, energy is not constant,

but the average energy over a period T is conserved. We will call systems

with a time-independent Hamiltonian instantaneously conservative

and those with a periodic Hamiltonian periodically conservative.

In the context of dynamical systems a conservative system has the

property that any region in phase space will retain a constant volume

as time passes [6]. This implies that there can be no attractors in the
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system, as there cannot be a basin of attraction that shrinks to the size of

the attractor.

There is also an important symmetry in the Lyapunov exponents of

a conservative system. Because any volume in phase space must stay

constant, if this volume is stretched in any direction, it must be equally

contracted in another direction as well. As the Lyapunov exponents show

how the flow of time stretches or contracts any volume in phase space,

this means for any positive Lyapunov exponent there must also be a

negative exponent of equal size. Therefore, the Lyapunov exponents of

a conservative system are symmetric around 0:

λi = −λn+1−i (2.7)

with n the number of exponents, and i = {0, 1, ..., n} [8]. Additionally,
because one exponent is always zero, and only 0 = −0, there must be

two zero exponents. Finally, the sum of all Lyapunov indicates the total

expansion or contraction of the volume, and therefore has to be equal to

zero:

∑
i

λi = 0. (2.8)

These symmetries are also valid for periodically conservative systems,

as the Lyapunov exponents are a time-averaged quantity [9].

2.1.6 Systems with viscous damping

Another important category of systems for this project is the category

of conservative systems with the addition of a viscous damping force.

Physically, a damping force (like friction) slows the system’s movement,

and is thus proportional to the momentum:

Fd ≡ −γp

where γ is a coefficient that indicates the strength of damping. We can

add this to our equations for Hamiltonian systems by adding Fd to the

force term F = dp/dt:

pt = −Hq − γp

leading to the system

ẋ =



q̇1

ṗ1

q̇2

ṗ2

...


= f =



Hp1

−Hq1 − γp1

Hp2

−Hq2 − γp2

...


where H = H(x). (2.9)
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The dynamical properties of this system differ from those of conserva-

tive systems in an intuitive way. Volumes in phase space are not constant,

but shrink at a rate proportional to γ. From this it follows that the sum

of the Lyapunov exponents is also proportional to γ. In fact, their sum is

∑
i

λi = −γ
2
.

Finally, the same symmetry of Lyapunov exponents exists, except this

time they are symmetric [9] around the value −γ2 :

λi +
γ

2
= −

(
λn+1−i +

γ

2

)
(2.10)

2.2 C. elegans locomotion as a dynamical system

Much analysis has been done on time series obtained from the movement

data of C. elegans [1]. From this analysis a specific reconstruction of the

phase space has emerged that provides a number of valuable insights.

First of all, using the method of false nearest neighbors, it has been

established that the full C. elegans phase space can be very accurately

reconstructed in 6 dimensions. In addition to that, singular value decom-

position results in a particular basis in which the coordinate axes map

neatly onto the three established discrete behaviors of forward movement,

backward movement, and turning.

Figure 2.5: The estimated Lyapunov
spectrum for C. elegans locomotion
from [1]. It shows the culmulative
distribution of the 6 LE’s, calculated
1000 random phase space reconstruc-
tions. The spectrum can be separated
in noisy distributions around 6 peaks,
indicating there are 6 distinct expo-
nents in these dynamics. They are
approximately symmetric around the
value indicated by the dashed line.

Finally, from this phase space reconstruction a Lyapunov spectrum has

been calculated (Figure 2.5). This spectrum convincingly shows that there

are 6 separate LEs, of which two are positive, one is zero, and three are

negative. The zero exponent indicates that the trajectories indeed seem to

follow a continuous, deterministic flow. Also, the Lyapunov spectrum is

symmetric about a small negative value, which gives strong hints as to the

structure of the eventual model.

As noted in Chapter 2.1.6, for conservative systems with viscous damp-

ing added it is exactly the case that their Lyapunov exponents are sym-

metric around a negative value (see Equation 2.10). This means that any
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model for C. elegans behavior must be able to be expressed as a system

that has viscous damping, but is otherwise conservative. We can check

this numerically by looking at the Lyapunov spectrum, but we can also

check this for models for which f is known by trying to formulate them

using a Hamiltonian and the equations in Eq. 2.9.

2.3 Constraining the model space

When trying to find a model that fits the behavior of C. elegans, a good

first step is to outline which kind of models could be up to the task. To

do so we have to consider the global, qualitative behavior of different

classes of models and then numerically investigate only those that show

similar behavior as resulted from the analysis above.

The most general classification is the one in Equation 2.9, which is the

class of conservative systems with viscous damping, limited to 6 dimen-

sions. However, that leaves a large number of possible models for which

no archetypal examples exist that can be enumerated systematically.

Therefore the class of models should be narrowed down further before

trying to find a model with suitable behavior. In the spirit of trying to

find an understandable model, we will look at exisiting models that have

a physical interpretation, and should be able to show qualitatively similar

behavior.

2.3.1 Multi-pendulum systems

The first example of a physical model chaotic system that comes to mind

is the double pendulum, consisting of a simple pendulum hanging off

the end of another pendulum. When this pendulum is subjected to a peri-

odic external force, its swinging motion can be chaotic. Alternatively, we

can consider the triple pendulum, with another pendulum attatched.

This system shows hyperchaotic behavior [10], and is fully autonomous.

An example of a chaotic trajectory of the triple pendulum is shown in

Figure 2.6. Moreover, in a Hamiltonian formulation it is 6-dimensional (3

angles and 3 angular velocities) and conservative. Therefore, if we calcu-

late its Lyapunov spectrum for a choice of parameters that shows chaotic

behavior, it should be symmetric around 0. If we then add a uniform

damping term, we should get a qualitatively similar spectrum to the C.

elegans spectrum.

The upside of the triple pendulum is that it has a clear physical in-

terpretation. However, its equations of motion are very complicated [11].

This makes it hard to integrate the system and to calculate the Lyapunov

exponents. The same difficulties are also found in performing calculations

for the double pendulum. One reason why is that the equations are hard
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Figure 2.6: A chaotic trajectory
for the triple pendulum from [11].
The Lyapunov exponents for this
trajectory were found to be λ1 =

10.06, λ2 = 1.85, and λ3 = 0.00 (rest
given by symmetry). The parameters
and equations of motion can be found
in [11].

to integrate, because they are very sensitive to small errors in the inte-

gration. To generate a valid trajectory, an integrator must be used which

incorporates energy conservation. Otherwise, the Lyapunov exponents

for the system will be incorrect. Experimentally, it is observed that the

zero exponents diverge. This added difficulty makes the multi-pendulum

systems less suitable for this project, but as they can show a large range

of behavior they provide an interesting pathway for future research.

2.3.2 Coupled chaotic oscillators

Another way to obtain the qualitative behavior sought after is by inves-

tigating coupled chaotic oscillators. If we have two 3-dimensional

oscillators that show chaotic behavior (a positive Lyapunov exponent),

embedding them in a 6-dimensional space will give a set of Lyapunov ex-

ponents that is simply the union of the single-oscillator sets of exponents.

However, if we now couple the two oscillators, we expect one of the zero

exponents will become negative, leading to a spectrum similar to the C.

elegans spectrum, where two exponents are positive, one is zero, and three

are negative. This transformation of the Lyapunov spectrum has been

experimentally observed in coupled Rössler systems [12].

This situation can be engineered when coupling two harmonic oscilla-

tors by changing the equations in a specific way. If we have two harmonic

oscillators described by four equations:

ẋ1,2 = v1,2

v̇1,2 = −kx1,2,
(2.11)

we can write down a Hamiltonian for this system:

H(x1, v1, x2, v2) =
k

2

2∑
i=1

x2
i +

1

2

2∑
i=1

v2
i ,

which shows that the system is conservative. Now in order to couple

them in a way that preserves the symmetry of the Lyapunov spectrum,
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there is only one way in which we can change the equations: by adding a

uniform damping term to the velocities.

ẋ1,2 = v1,2

v̇1,2 = −kx1,2 − Cv1,2,
(2.12)

where C is some constant. However, this does not couple the oscil-

lators. An intuitive way to couple them from here would be to instead

dampen the phase velocity difference v1 − v2, so that they attempt to

synchronize their movements.

ẋ1,2 = v1,2

v̇1,2 = −kx1,2 − C (v1,2 − v2,1) ,
(2.13)

Now the question is: does coupling them in this way preserve the sym-

metry? For that to be the case, it must be possible to rewrite the equa-

tions in the form of Eq. 2.9, so in other words, the whole system without

the damping terms must be Hamiltonian:

ẋ1,2 = v1,2

v̇1,2 = −kx1,2 + Cv2,1

H(x1, v1, x2, v2) = ...

(2.14)

In order to write a Hamiltonian for the above system we will perform

two coordinate transformations. First, we change to a basis of

x+,− = x1 ± x2

v+,− = v1 ± v2,

so that the equations become

ẋ+,− = ẋ1 ± ẋ2 = v+,−

v̇+ = v̇1 + v̇2 = −k(x1 + x2) + C(v2 + v1) = −kx+ + Cv+

v̇− = v̇1 − v̇2 = −k(x1 − x2) + C(v2 − v1) = −kx+ − Cv−,

(2.15)

One aspect of note is that in this basis the equations are symmetric.

While the equation for v− has a damping term (-C), the equation for v+

has a inverted (+C) damping term. This already seems to implicate that

energy is conserved between these two quantities.

If we compare these equations the ones in [13], we see that they are

the same as the equation for a damped harmonic oscillator together with

what is in their case an auxillary equation. This means we can use the

same approach in writing a Hamiltonian for this system. If the second
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coordinate transformation is performed as:

q1,2 = x+,−

p2 = v+

p1 = v− − Cx−,

(2.16)

we can write down the Hamiltonian

H(q1, p1, q2, p2) = p1p2 + kq1q2 − Cq2p2

from which the equations of motion are derivable by choosing the pairs

(qi, pi) as positions with conjugate momenta.8 The following equations are 8 Note that the definitions of q and p
are ‘swapped’, so that q1 corresponds
to x+ but p2 corresponds to its time
derivative v+.

then obtained:

q̇1 = Hp1 = p2

ṗ1 = −Hq1 = −kq2

q̇2 = Hp2 = p1 − Cq2

ṗ2 = −Hq2 = −kq1 + Cp2,

(2.17)

for which substituting variables as in (2.16) shows that these are the

same equations as in (2.15), and therefore they describe the same system

as in (2.14). This shows the coupled system without damping is Hamilto-

nian, and its conserved quantity in (x1,2, v1,2)-space is

H = v2
1 − v2

2 + k
(
x2

1 − x2
2

)
.

The only question that remains is, what happens when we add the

damping? To do this properly, we should work backwards from the q, p

coordinates and find the right equations for v̇1,2. We can make the follow-

ing adjustment while preserving symmetry:

q̇1 = Hp1 = p2

ṗ1 = −Hq1 − Cp1 = −kq2 − Cp1

q̇2 = Hp2 = p1 − Cq2

ṗ2 = −Hq2 − Cp2 = −kq1,

(2.18)

for which a substitution of variables shows that the corresponding

equations for x and v are

ẋ1,2 = v1,2

v̇1,2 = −kx1,2 + Cv2,1 −
C2

2
(x1,2 − x2,1) .

(2.19)

This leads us to conclude the right way to couple two oscillators while
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preserving symmetry is as follows:

ẋ1,2 = v1,2

v̇1,2 = −kx1,2 − C (v1,2 − v2,1)− C2

2
(x1,2 − x2,1) .

(2.20)

It is argued that this same principle might also hold when coupling

other (chaotic) oscillators, leading to a conservative system with an effec-

tive added damping. In that case, coupling two 3-D conservative chaotic

oscillators should lead to a spectrum qualitatively similar to the C. el-

egans spectrum. In the following sections, two conservative oscillating

systems are considered as candidates for investigation into their behavior

after coupling.

2.3.3 Nosé-Hoover oscillator

The Nosé-Hoover oscillator is a model for the interaction between a

Hamiltonian system embedded in a heat bath at constant temperature,

often used for simulations of molecular dynamics. It is conservative (en-

ergy is only exchanged between heat bath and the molecular system) so

that the Lypaunov spectrum is symmetric [14]. It can be described as a

three-dimensional dynamical system:

f =


ẋ

v̇

ṡ

 =


v

−x− vs
a(v2 − 1)

 (2.21)

where x represents position, v velocity or momentum, and s is the

effective friction imposed by the heat bath.

These equations are obtained from a nondimensionalization of a

(2n + 2)-dimensional Hamiltonian system of oscillating particles (2 vari-

ables each) with an extra heat bath ‘particle’ (with its own position and

momentum) which is kept at a constant temperature, with which the

other particles can exchange energy. It is used in chemical simulations

to keep the temperature of a large ensemble of particles constant, so this

extra heat bath component is also called a thermostat.

This system exhibits chaotic behavior, and is one of the simplest ex-

amples of a 3-dimensional system that does so [15]. It also has a nice

physical origin related to statistical mechanics, which gives it a connection

to the subtly varying behavior of a system kept at a temperature that is

constant on average but fluctuates on short time scales.

The behavior of coupled instances of this system has been studied [16],

but not in the context of dynamical systems and related properties, so

this makes it an interesting direction for numerical investigation.

To couple these systems in a way that is similar to both the previous
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section on coupled harmonic oscillators (hopefully preserving symmetry)

and to the coupling in [12], the following system specification is used:

ẋ =



ẋ1

v̇1

ṡ1

ẋ2

v̇2

ṡ2


, (2.22)

ẋ1,2 = v1,2

v̇1,2 = −k1,2x1,2 − v1,2s1,2 − C (v1,2 − v2,1)− C2

2
(x1,2 − x2,1)

ṡ1,2 = a(v2
1,2 − 1).

(2.23)

Here the coupling between two instances is performed just as with the

harmonic oscillators, and a new ‘spring constant’ parameter k1,2 is added.

In this way, we can make the oscillation frequencies of the oscillators

slightly dissimilar, just as in [12].

2.3.4 Periodically driven oscillators

Another category of oscillators that can show chaotic behavior are driven

oscillators. The simplest example is a pendulum that is affected (driven)

by a periodic force,

φ̈+ sin(φ) = sin(t).

This oscillator shows chaotic behavior for a large number of initial con-

ditions (see Figure 2.7) [17]. We can write it as a Hamiltonian system by

using the Hamiltonian

H(p, q, t) =
p2

2
− cos(q)− q sin(t),

where q ≡ φ and p ≡ φ̇ ≡ ω. This Hamiltonian is periodic with period

T = 2π, so this is a periodically conservative system and the desired

symmetry of the Lyapunov spectrum applies to this system.

If we express this oscillator as a dynamical system, it is non-autonomous

because of the explicit dependence on t. We can make it autonomous by

introducing a third variable:

f =


φ̇

ω̇

τ̇

 =


ω

sin(τ)− sin(φ)

1

 (2.24)

Because the driving signal here is simple, we can also write this system
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Figure 2.7: The Poincaré section for
the driven pendulum in Eq. 2.24,
from [17]. This shows a ‘slice’ of
the phase space, namely the values
of φ and ω whenever τ = π

2
(mod

2π) during a trajectory. The dots
covering almost the entire space show
that a trajectory going through one
of the dots might re-enter the slice at
almost any other point, indicating the
non-periodic shape of the trajectories.
There are only a few empty regions of
initial conditions, indicating periodic
trajectories occur there instead.

as a unidirectionally coupled system of two oscillators. If a system with

equations

f =

φ̇2

ω̇2

 =

 ω2

−φ2

 (2.25)

is started with the initial conditions (φ2, ω2) = (0, 1), it will generate

the output signal (i.e. a solution of the system will be) φ(t) = sin(t)9. 9 This is just a harmonic oscillator
so its solution is assumed common
knowledge.Therefore we can rewrite Eq. (2.24) as

f =


φ̇1

ω̇1

φ̇2

ω̇2

 =


ω1

φ2 − sin(φ1)

ω2

−φ2

 , (2.26)

which is a system of a harmonic oscillator driving a pendulum. If this

system is given the mentioned initial conditions for (φ2, ω2), its behavior

should be equivalent to the system in Eq. (2.24).

Other examples which are based on different conservative oscillators

are mentioned in [17]. As many of these systems exhibit chaotic behavior,

a coupling of two systems of this kind should result in a system with the

desired Lyapunov spectrum, given the right parameters. It also provides a

large class of systems to enumerate.



CHAPTER 3

Methods

3.1 Numerical evaluation of dynamical systems

If we have a dynamical system defined by a flow function f , we cannot

straightforwardly investigate its properties by looking at the equations.

To plot the phase space, or to calculate Lyapunov exponents, we need to

know what trajectories the system follows. For any dynamical system, we

can obtain a set of these trajectories by numerical integration. We pick

one or a set of initial conditions x0, and iteratively use the value of ẋ

given by f(x) to calculate the ‘next’ point in phase space, after a small

discrete time step.

There are several techniques to calculate the value x[t + ∆t] (after a

time step ∆t), from the equation ẋ = f(x) and the current value of x[t].

The simplest is called the (forward) Euler method, and simply uses the

value of f as a constant derivative (i.e. a linear slope):

x[t+ ∆t] = x[t] + ∆t · f(x[t]).

This is a linear method, which means that the error (i.e. the distance

from the actual function x(t)) is proportional to the step size ∆t. This

means a very small step size is necessary for accurate calculation of a

trajectory. A simple improvement of the accuracy can be made by using

the (explicit) midpoint method. Here the derivative ẋ is evaluated at

t + ∆t by using a regular Euler step, and then the derivative used in the

actual evaluation is the average of ẋ at t and at t+ ∆t.

ẋ1 ≡ f(x[t]),

ẋ2 ≡ f(x[t] + ∆t · ẋ1),

x[t+ ∆t] = x[t] +
ẋ1 + ẋ2

2
∆t.

This essentially approximates the linear slope halfway between t and at

t + ∆t. This method is also known as the second-order Runge-Kutta
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method, as part of a family of higher-order methods. Even more accu-

rate, and often used, is the fourth-order method RK4, which works by

calculating 4 midway derivatives:

ẋ1 ≡ f(x[t]),

ẋ2 ≡ f(x[t] + 0.5∆t · ẋ1),

ẋ3 ≡ f(x[t] + 0.5∆t · ẋ2),

ẋ4 ≡ f(x[t] + ∆t · ẋ3),

x[t+ ∆t] = x[t] +
ẋ1 + 2ẋ2 + 2ẋ3 + ẋ4

6
∆t.

In any case, when performing numerical integration very small num-

bers are used, for example in the time step ∆t. To avoid rounding errors,

whenever these small numbers are added to a large number1 a compensa- 1 For example in calculating t + ∆t,
because t will grow large while ∆t
will remain a small number.tion algrithm such as Kahan summation2 should be used.

2 Kahan summation works by com-
paring the value after summing
to the largest value before. As the
change may be negligible because
of limited precision, a compensation
value will be tracked in order to
‘bundle’ successive additions into a
larger number which may be added
properly. In this way the successive
rounding errors will not add up over
time.

3.2 Estimation of the Lyapunov exponents

3.2.1 Linear approximation and iteration of the flow

As noted in Chapter 2.1.3, the full Lyapunov spectrum consists of n ex-

ponents for a n-dimensional system. These emerge when considering how

the volume of an n-dimensional region changes when it is deformed under

the flow f .

In this section we will derive a more explicit formula for the Lya-

punov exponents which can be used to program an algorithm to calculate

them. The Lyapunov exponents come into play when looking at how the

distance between nearby points converged or diverges as time elapses.

We will consider two nearby points p1 and p2 and their distance vector

d = p2 − p1 which has a small initial size ‖d‖ = d0 � 1. Its time evolution

looks like
˙
d = ṗ2 − ṗ1 = f(p2)− f(p1).

Now, we make an approximation: we’re investigating the dynamics of a

small distance d0, so it suffices to look at the local linear approximation of

f . We’ll call this function fl.

We can find an expression for fl by Taylor-expanding it around p1:

[fl]i(p) = fi(p1) +
∂fi
∂xj

(p1) ([p]i − [p1]i) . (3.1)

Here [v]i signifies the i-th component of the vector (or vector function) v,

and there is an implicit sum over all phase-space coordinates xj .
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Using this to express the time evolution of d gives:[
˙
d
]
i
≈ [fl]i (p2)− [fl]i (p1)

= fi(p1) +
∂fi
∂xj

(p1)
(

[p2]i − [p1]i
)
− fi(p1)− ∂fi

∂xj
(p1) ([p1]i − [p1]i)

=
∂fi
∂xj

(p1) ([p2]i − [p1]i)

=
∂fi
∂xj

(p1)
[
d
]
i
.

From this we get the definition of the Jacobian, which is a matrix J

with entries

J ij =
∂fi
∂xj

(p1),

so that
˙
d ≈ Jd.

This matrix represents the linearized flow of the system near point p1.

In order to find the Lyapunov exponents, we should study not the flow,

but the effect the flow has over a long time (i.e. in the near-infinite time

limit). To do so, we can construct the flow map

M = I + ∆tJ ,

which is a matrix that when applied to a distance vector d maps it a time

∆t forward into time:

Md(t) = d(t) + ∆tJd(t) ≈ d(t) +
˙
d(t) ·∆t ≈ d(t+ ∆t)

Here the time step ∆t needs to be small, because we have chosen to only

use a linear timestep, so again this is an approximation. Also, for each

point p in the trajectory and thus for each time step the Jacobian and the

flow map need to be recalculated, because the local flow may differ from

point to point.

Using the maps M(t) we can iterate the distance vector from the be-

ginning of the trajectory to some time t = n∆t:

d(t) = d(n∆t)

= M(p([n− 1]∆t))d(([n− 1]∆t)

= M(p([n− 2]∆t))M(p([n− 1]∆t))d([n− 2]∆t)

=

0∏
i=n−1

M(p(i∆t)) d(0).

To simplify the notation the Jacobian will now be called Jn = J(p(n∆t))

and the flow map Mn = M(p(n∆t)) to signify they are based around the

point p(n∆t) that occurs in the trajectory after taking n time steps. Then
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the iteration becomes:

x(t) =

0∏
i=n−1

Mi x(0),

where t = n · δt.
Now, if we have a trajectory of N time steps, the matrix product

MN−1MN−2...M0 will tell us about the full evolution of a distance

vector d along the trajectory. We will therefore define

F ≡
0∏

i=N−1

Mi

as the integrated flow matrix. In our numerical investigation, keep-

ing track of the transformed volume along the entire trajectory is the

nearest we can get to the infinite-time limit for the calculation of the Lya-

punov exponents as in Eqs. 2.4 and 2.5. We can therefore investigate the

volume-expanding or contracting properties of this matrix to generate an

estimate for the Lyapunov exponents. The next section will describe an

algorithm that computes this matrix iteratively and uses it to estimate

the exponents.

3.2.2 Volume scaling and the QR decomposition

To find the Lyapunov exponents, we are interested in what the long-time

behavior of volumes in phase space is. For this we need to calculate what

the volume-scaling effect is of the matrix F .

We start with an n-dimensional object (where n is the dimension of our

phase space): an ‘identity volume’, which is an n-parallelepiped spanned

by the column vectors of the identity matrix In. This object has two nice

properties: its initial volume V0 = 1, as the determinant of the identity

matrix is 1. Additionally, the final volume is given by FIn = F , i.e. the

volume of the object spanned by the columns of F . Therefore the volume

limt→∞ Vn(t) will be approximated by this volume.

To view the volume-scaling behavior of F , we can perform a QR-

decomposition of the matrix. This decomposition splits F into the prod-

uct of a Q, which is orthogonal3, and a R, which is upper triangular4.

3 An orthogonal matrix Q has column
vectors that are each orthogonal ot
one another, and have length 1. This
means that the matrix is volume-
preserving (its determinant is 1), and
its transpose QT is also its inverse, so
that QTQ = QQT = I.

4 An upper triangular matrix U has
only zero entries below the diagonal,
i.e., only the entries on and above the
diagonal are nonzero. The general
form is:

U =


u1,1 u1,2 . . . u1,n

0 u2,2 . . . u2,n
...

. . .
. . .

...
0 . . . 0 un,n

 .
This means it has some useful prop-
erties, one being that its determinant
is given by the product of its diagonal
values.

This is already a very useful decomposition for us, as the matrix Q wil be

volume-preserving, and therefore does not affect the change in volume of

our object. Secondly, the matrix R is upper triangular, which means its

effect on the volume can easily be calculated by taking the product of the

values on its diagonal. Therefore the change in volume can be calculated
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as

lim
t→∞

Vn(t) ≈ det(F ) · V0

= det(F ) · 1

= det(Q) det(R)

= 1 · det(R)

=

n∏
i=0

Rii

We can visualize these transformations by performing a further decom-

position. Note that the matrix R consists of a scaling part (the diagonal,

giving rise to equations such as xt+1 = c · xt) and a shearing part (the val-

ues above the diagonal, giving rise to equations such as xt+1 = xt + c · yt).
We can separate these by constructing a diagonal matrix D containing

the same diagonal as R,

Dij =

Rij if i = j,

0 if i 6= j,

and then using its inverse D−1 to calculate S = RD−1, so that:

F = QR = QRD−1D = QSD.

This separates F into three transformations, first scaling by D, then

shearing by S, then a rotation or mirroring by Q. Also, note the diagonal

of S has only ones because of its definition, so that det(F ) = det(D) and

the volume scaling part is clearly contained in D (or the diagonal of R).

For a (n − 1)-dimensional volume, we can consider the object spanned

by the first n − 1 columns of In, which we will call Ĩn−1. The resulting

volume is then given by RĨn−1 which is equal to the first n − 1 columns

of R concatenated, which we will call R̃n−1. This matrix represents a

(n − 1)-dimensional object in n-dimensions, which understandably has

zero volume, as it is flat in the n-th dimension5. However, to consider 5 Note that the determinant also
doesn’t exist, as it is not a square
matrix.the volume in the first (n − 1)-dimensions, we can truncate the last row

from R̃n−1 and Ĩn−1 to obtain Rn−1 and In−1. This does not change the

shape of the object, as in both cases no column has a nonzero component

in the last dimension (i.e. the last row is all zeroes). Then, we again have
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V0 = det(In−1) = 1 and

lim
t→∞

Vn−1(t) ≈ det(Rn−1)

=

n−1∏
i=0

[Rn−1]ii

=

n−1∏
i=0

Rii,

so the final volume is given by the product of the first n− 1 values on the

diagonal of R.

Repeating this process for n − 2 dimensions, n − 3 dimensions, until 1

dimension, gives the result that for any m ≤ n:

lim
t→∞

Vm(t) ≈
m∏
i=0

Rii.

Then an equation for the Lyapunov exponents follows by substituting into

Eq. (2.5):

λm = lim
t→∞

1

t
ln

(
Vm(t)

Vm−1(t)

)
≈ 1

N∆t
ln

( ∏m
i=0Rii∏m−1
i=0 Rii

)

=
1

N∆t
ln (Rmm.)

(3.2)

3.2.3 Iteratively calculating the QR decomposition of F

To calculate the R-part of F , we of course first have to calculate F itself.

However, this leads to numerical errors, as the indices of F can get very

big and so we lose precision when taking the average in the end. For ex-

ample, if each time step scales the volume by a factor 1.22 (corresonding

to a (discrete) Lyapunov exponent of about 0.2), after 50000 time steps

the cumulative scaling factor will be 1.2250000 ≈ 9.8 · 104317. Involving

numbers this large will lead to a loss of precision. Instead, we would like

to calculate (the diagonal values of) R in an iterative way, so that we can

keep track of a moving average which will always be similar in size to the

final value of the exponent.

We can write F as the product

F = MN−1MN−2...M1M0

so an intuitive way would be to decompose each M i into M i = QiRi.

However, this leads to a sequence of

F = QN−1RN−1QN−2RN−2...Q1R1Q0R0 = QR

which does not help in calculating the final value of R, as QiRi 6= RiQi
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and so we still need to calculate the full product. We would like to have a

sequence of Qs followed by Rs, so that

F = QN−1QN−2...Q1Q0RN−1RN−2...R1R0 = QR

which implies

Q = QN−1QN−2...Q1Q0

R = RN−1RN−2...R1R0,

as the product of orthogonal matrices is itself a orthogonal matrix, and

the product of upper triangular matrices is also a upper triangular ma-

trix.

A different way to calculate F iteratively is as follows. Starting with

M0, we can just decompose this as

M0 ≡ Q0R0.

Then, we can rewrite the product M1M0 as follows:

M1M0 = IM1M0 = Q0Q
T
0 M1M0

= Q0Q
T
0 M1Q0R0

≡ Q0Q1R1R0.

Here we have used the fact that Q0 is orthogonal and so Q0Q
T
0 = I, and

also decomposed QT0 M1Q0 into Q1R1. We can repeat this process for the

product M2M1M0:

M2M1M0 = Q0Q1(Q0Q1)TM2M1M0

= Q0Q1(Q0Q1)TM2Q0Q1R1R0

≡ Q0Q1Q2R2R1R0.

From this we get the iterative sequence:

Q0R0 = M0

Q̂n ≡
n∏
i=0

Qi

QnRn = Q̂Tn−1MnQ̂n−1,

which we can use to calculate Q0, R0, Q̂0, then Q1, R1, Q̂1, then Q2, R2,

Q̂2, and so on.

Due to the stucture of upper triangular matrices, any product of two

upper triangular matrices will have on its diagonal the product of the

values on the factors’ diagonals6. In other words:

6 For an upper triangular matrix U,
the i-th row will look like this:

Ui,: =



0
...
0
Ui,i
Ui,i+1

...
Ui,n


,

while the j-th column will look like
this:

U:,j =



U1,j

...
Uj−1,j

Uj,j
0
...
0


.

For a product U = U1U2 the diagonal
value Um,m will consist of the dot
product between [U1]m,: and [U2]:,m
which is

Um,m = [U1]m,:·[U2]:,m = [U1]m,m[U2]m,m.
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Rmm =

N−1∏
i=0

[Ri]mm

ln (Rmm) =

N−1∑
i=0

ln ([Ri]mm) .

So to calculate the diagonal values of the final R, only the diagonal values

of each Rn need to be stored7. For the Lyapunov exponents, because
7 Note that, to calculate any Rn, we
need both Mn and Q̂n−1. Therefore
the product of all Qn matrices needs
to be stored as well.

the logarithm converts products into sums, we can store just the values

of ln ([Ri]mm) and average these over time to find an estimate of the

exponents:

λm ≈
1

N∆t
ln (Rmm)

=

N−1∑
i=0

1

N∆t
ln ([Ri]mm) .

(3.3)

3.2.4 Implementation of the algorithm

The algorithm as described above has been implemented in Python, using

the libraries numpy and scipy for integration, the QR decomposition, and

further matrix computations.

The algorithm is largely based on the algorithm in [18]. It is a fairly

direct implementation of the equations as described in the previous sec-

tions, with the addition of a decomposition window. In order to save

computation time, we don’t have to perform a QR decomposition for ev-

ery map M i, as the main reason for doing this is the numerical instability

of calculating the full matrix F . However, we might be able to calculate

the product M i+LM i+L−1...M i+1M i for a small number of iterations

L. This L is our decomposition window, because it specifies how often we

perform the QR decomposition.

The main part of the algorithm is specified in code in Appedix A. In

order to evaluate the accuracy of the results given by this algorithm, two

methods have been developed.

The first of these is the λ+-error, or exponent-sum error. This is a

way to estimate the error in the sum of the exponents for a given system.

This is made possible because the sum of the Lyapunov exponents is

equal to the average volume expansion, which gives rise to the identity:

λ+ =

n∑
i=1

λi = trace(J) =

n∑
i=1

J ii. (3.4)

This means the value of the sum can be calculated in two different ways,

and these can be compared. Because the exponents are a time-averaged

quantity, we should also calculate the average trace of the Jacobian for

systems where the volume expansion is not constant. If the value of the

trace is constant, or it converges faster than the Lyapunov exponents
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themselves, we can already calculate the sum this way to high accuracy

after only a few time steps. Then, comparing the sum of the finite time

exponents to the sum given by the trace gives us an error bound of the

sum at that point. This tells us about the accuracy of the finite-time

Lyapunov exponents with regards to their values in the infinite limit, for

which the two sums should be exactly equal. This value then becomes a

measure of how far the exponents are along to convergence.

However, having an error value for the sum of the exponents does

not tell us anything about the individual values8. To give an estimate 8 This is the case because we don’t
know if there are correlations between
the values. If we know there are none,
we could say that

(λ̃+)2 = λ̃1
2

+ ...+ λ̃n
2
≥ λ̃i

2

and therefore

λ̃i ≤ λ̃+

for any 0 ≤ i ≤ n (where λ̃i is the
error in the i-th exponent). However,
we don’t know the correlations are
zero, and there are example in which
they are most likely not zero.
If we have a time-independent sym-

metry in the system, it is conservative
for example, we expect the values
of the Lyapunov exponents to be
symmetric as well at any time. This
means that, if one exponent grows
over time, its symmetric counterpart
must grow as well. Therefore there is
a clear nonzero correlation between
the two.

of the accuracy of the individual values, convergence plots have been

produced. These plots display how close the value of an exponent is after

n time steps, compared to the final value of the exponent. We call this

the distance to the final value. For example, if the distance seems to be

about 10−2 near the end of the plot, we cannot be confident in the final

value of the exponent up to more than two decimal places. After all, if we

had stopped the calculation slightly earlier, its value might bhave differed

by 10−2! In this way the ‘absolute’ reliability of the actual values for the

exponents can be judged from these plots, while the ‘relative’ reliability

(have they converged or not) can be judged from the λ+-error.



CHAPTER 4

Results

The results of this project consist of three parts. First, the algorithm for

calculating Lyapunov exponents is demonstrated by performing the calcu-

lation on the Lorenz system. Then the results for a variety of systems is

presented. Afterwards, the behavior of a coupled Nosé-Hoover system is

investigated and the relationship between the coupling strength and the

Lyapunov spectrum is presented.

4.1 Detailed calculation of the Lyapunov exponents

To illustrate the functioning of the algorithm, one calculation will be

discussed in particular. These results are for a calculation on the Lorenz

system

ẋ =


ẋ1

ẋ2

ẋ3

 =


σ (x2 − x1)

x1 (ρ− x3)− x2

x1x2 − βx3

 ,

with parameters σ = 16, β = 45.92 and ρ = 4. These parameters were

chosen because they are the same as used for the calculation in [18] and

so allow for comparison between results.

The further parameters of the algorithm were a trajectory length T =

3000 time units, and a time step ∆t = 0.04. Figure 4.1 shows that the

region traversed by this trajectory is quite dense, and so it provides a

good view of the entire attractor.

The result of the computation of the Lyapunov exponents is given in

Figure 4.2, together with a plot of their intermediate values. The values

for the λ+-error during computation are displayed in Figure 4.3. Finally,

the sum of the exponents together with its error are displayed in Figure

4.4.

Because the trace of the Lorenz system is constant, the λ+-error only

depends on the sum of the exponents. For a system where the mean vol-

ume expansion is not constant, the validity of the λ+-error should also be



determining suitable models for c. elegans locomotion by evaluating lyapunov
exponents 36

Figure 4.1: A plot of a trajectory of
the Lorenz system with parameters
σ = 16, β = 45.92 and ρ = 4,

initial conditions x0 =

1
0

0

, and

a length of 3000 time units. The
left plot displays a 3D view, while
the right plots display each pair of
exponents, with (x, y) from top to
bottom: (x1, x2), (x2, x3), (x1, x3).
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Figure 4.2: The calculation of the
Lyapunov exponents for the Lorenz
system with parameters σ = 16,
β = 45.92 and ρ = 4. The values at
time τ are the finite-time Lyapunov
exponents for t = 0 to t = τ .
The final values at t = T = 3000

are: λ1 = 1.4948, λ2 = −0.0001,
λ3 = −22.4933, with a sum of
−2.100 ·101 ± 1.4 ·10−3. The left plot
displays the full trajectory, whlie the
right displays only the first 40 time
units in order to show the speed of
convergence more clearly.
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Figure 4.3: A log-log plot of the λ+-
error for the calculation as in Figure
4.2. This plot is logarithmic to show
the λ+-error seems to follow a power
law. Fitting a function f(t) = atk

gives a = 19.59 and k = −0.9934.
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Figure 4.4: The sum of the exponents
for the Lorenz system as in Figure
4.2, with the associated error bars
given by the λ+-error as in Figure
4.3. Only the first 8 time units are
shown because the error gets small
enough to not be visible anymore
after that.
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Figure 4.5: The average trace of
the Jacobian for the Van der Pol
oscillator during a calculation of its
Lyapunov exponents. The first and
last 40000 steps are plotted. The
trace is not constant, but oscillates
along the limit cycle. These oscilla-
tions dampen over time but don’t
disappear. The final average value of
the trace is -7.364.
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Figure 4.6: A log-log plot of the
λ+-error for a calculation of the
Lyapunov exponents for the Van der
Pol oscillator. This plot is logarithmic
to show the λ+-error seems to follow
a power law. Fitting a function
f(t) = atk gives a = 7.705 and
k = −1.008.



determining suitable models for c. elegans locomotion by evaluating lyapunov
exponents 38

tested. For this we take the Van der Pol oscillator,

ẋ =

ẋ
v̇

 =

 v

−x− µ(x2 − 1)v

 ,

with parameter µ = 5. The results for this system can be compared

with those from [19]. The Van der Pol oscillator is not chaotic, but a

dissipative system with a limit cycle, which should have one zero and one

negative exponent. However, its trace is not constant, because there is a

friction which depends on x and therefore on time. The trace of the Van

der Pol oscillator is shown in Figure 4.5, and the λ+-error is shown in

Figure 4.6.

4.2 Lyapunov exponents of selected systems

Estimated values of the Lyapunov exponents have also been calculated

for a number of other systems. The results are visible in Table 4.1. These

systems all fall into one of two categories: they are either a reproduction

of earlier calculations for which the results can be checked with the cor-

responding literature (e.g. the Lorenz system), or they involve one of the

systems discussed in Chapter 2.3 that have been selected for numerical

investigation.

For each configuration of system and parameters, the iteration time

and the final values of the exponents are listed, along with their sum and

the associated λ+-error. In order to judge the accuracy of the values of

the individual exponents and the behavior of the algorithm, convergence

plots for all systems have been included in Appendix B. Power-law fits

of the λ+-errors have also been performed for all the systems and the

parameters are listed in Table 4.3. The values for the systems that have

been investigated previously are also listed in Table 4.2 for comparison.

These values were calculated using the algorithm implementation as

discussed in Chapter 3.2.4. For all calculations, a time step of ∆t = 0.04

has been used, as this appeared to provide sufficiently accurate values for

the zero exponents.

Systems that appear in literature are the Lorenz systems (a, b), the

Van der Pol oscillators (c, d), the Nosé-Hoover oscillators (e, f), and the

driven pendulum (j). Systems that do not appear in the literature but are
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System Parameters
Trajectory
length

Exponents Sum Reference

(a) Lorenz system 1
σ = 10,

β = 8
3
,

ρ = 10

3000
λ1 = 0.8965,

λ2 = 0.0006,

λ3 = −14.5628

−1.367 · 101

± 9.0 · 10−4 [20]

(b) Lorenz system 2
σ = 16,

β = 45.92,

ρ = 4

3000
λ1 = 1.4948,

λ2 = −0.0001,

λ3 = −22.4933

−2.100 · 101

± 1.4 · 10−3 [18]

(c) Van der Pol oscillator 1 µ = 5 2000
λ1 = 0.0002,

λ2 = −7.3638

−7.364 · 100

± 7.2 · 10−4 [19]

(d) Van der Pol oscillator 2 µ = 0.0499922 2000
λ1 = 0.0003,

λ2 = −0.0490

−4.861 · 10−2

± 4.8 · 10−6 N/A

(e) Nose-Hoover oscillator 1 a = 1 4000
λ1 = 0.0228,

λ2 = −0.0001,

λ3 = −0.0219

8.082 · 10−4

± 2.0 · 10−8 [17]

(f) Nose-Hoover oscillator 2 a = 3 4000
λ1 = 0.0604,

λ2 = −0.0000,

λ3 = −0.0630

−2.609 · 10−3

± 1.3 · 10−7 [21]

(g) Coupled harmonic
oscillators

C = 0.05 2000

λ1 = −0.0002,

λ2 = −0.0002,

λ3 = −0.0498,

λ4 = −0.0498

−9.999 · 10−2

± 9.8 · 10−6 N/A

(h) Coupled N-H pair 1

a = 3,

k̄ = 1,

∆k = 0.02,

C = 0.034375

4000

λ1 = 0.0116,

λ2 = 0.0062,

λ3 = −0.0025,

λ4 = −0.0104,

λ5 = −0.0250,

λ6 = −0.0358

−5.591 · 10−2

± 2.7 · 10−6 N/A

(i) Coupled N-H pair 2

a = 3,

k̄ = 1,

∆k = 0.02,

C = 0.096875

4000

λ1 = 0.0312,

λ2 = 0.0051,

λ3 = −0.0022,

λ4 = −0.0350,

λ5 = −0.0606,

λ6 = −0.0944

−1.559 · 10−1

± 7.6 · 10−6 N/A

(j) Driven pendulum F = sin(t) 4000

λ1 = 0.1638,

λ2 = −0.0000,

λ3 = −0.0000,

λ4 = −0.1638

−8.268 · 10−14

± 8.3 · 10−14 [17]

(k) Driven damped pendulum 1
d1 = 0.005,

F = sin(t)
2000

λ1 = 0.0088,

λ2 = −0.0000,

λ3 = −0.0000,

λ4 = −0.0588

−5.000 · 10−2

± 4.9 · 10−6 N/A

(l) Driven damped pendulum 2
d2 = 0.005,

F = e−0.0025t sin(t)
2000

λ1 = 0.0325,

λ2 = −0.0025,

λ3 = −0.0025,

λ4 = −0.0325

−5.000 · 10−3

± 4.9 · 10−7 N/A

(m) Pendulum driven by
Van der Pol oscillator

µ = 0.0499922 4000

λ1 = 0.1879,

λ2 = 0.0002,

λ3 = −0.0495,

λ4 = −0.1879

−4.930 · 10−2

± 2.4 · 10−6 N/A

Table 4.1: The estimated Lyapunov exponents for a variety of systems. (a) and (b) are instances of the Lorenz system, which
are well researched in literature. (c) and (d) are not chaotic, but dissipative systems with a limit cycle. (e) and (f) are Nosé-
Hoover (NH) oscillators, where both configurations also appear in the literature. (g) is an example of the coupling introduced in
section 2.3.2. (h) and (i) are examples of coupled NH oscillators, where one is more weakly and one more strongly coupled. (j) is a
configuration of the (4D) driven pendulum which shows chaotic behavior, and (k) and (l) are identical but with an added damping.
In (m) the pendulum is instead driven by a Van der Pol oscillator as in (d).
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System Reference Exponents Reference exponents Sum Reference sum

Lorenz system 1 [20]
λ1 = 0.8965,

λ2 = 0.0006,

λ3 = −14.5628

λ1 = 0.90563,

λ2 = 0,

λ3 = −14.57219

−1.367 · 101

± 9.0 · 10−4 −1.366 · 101

Lorenz system 2 [18]
λ1 = 1.4948,

λ2 = −0.0001,

λ3 = −22.4933

λ1 = 1.4978,
λ2 = −0.0037,
λ3 = −22.4940

−2.100 · 101

± 1.4 · 10−3 −2.099 · 101

Van der Pol oscillator 1 [19] λ2 = −7.3638 λ2 = −7.362
−7.364 · 100

± 7.2 · 10−4 N/A

Nosé-Hoover oscillator 1 [17] λ1 = 0.0228 λ1 = 0.0139
8.082 · 10−4

± 2.0 · 10−8 N/A

Nosé-Hoover oscillator 2 [21] λ1 = 0.0604 λ1 = 0.061 ± 0.001
−2.609 · 10−3

± 1.3 · 10−7 N/A

Table 4.2: The values of Lyapunov
exponents for a number of systems
together with reference values from
literature. When a value is omitted
(or N/A) this is because it is not
mentioned or not all exponents are
calculated so the sum can not be
calculated either.

System k a
Behavior w.r.t.
volumes

Lorenz system 1 -0.9968 13.0396 Dissipative
Lorenz system 2 -0.9934 19.5894 Dissipative
Van der Pol oscillator 1 -1.0077 7.7048 Dissipative
Van der Pol oscillator 2 -0.7064 0.0037 Dissipative
Nose-Hoover oscillator 1 -1.9946 11.6745 Conservative
Nose-Hoover oscillator 2 -1.9978 50.4616 Conservative
Coupled harmonic oscillators -0.9966 0.0952 Dissipative
Coupled N-H pair 1 -1.3397 1.2234 Dissipative
Coupled N-H pair 2 -1.1471 0.5086 Dissipative
Driven pendulum 0.1513 0.0000 Conservative
Driven damped pendulum 1 -0.9966 0.0476 Dissipative
Driven damped pendulum 2 -0.9966 0.0048 Dissipative
Pendulum driven by
Van der Pol oscillator

-0.7991 0.0074 Dissipative

Table 4.3: The parameters for a
power law fit f(t) = atk for the
λ+-error of the calculations in Table
4.1. The average of k for all the
dissipative systems is 〈k〉 = 0.998.
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motivated in this thesis are the coupled harmonic oscillators (g):

ẋ =


ẋ1

v̇1

ẋ2

v̇2


ẋ1,2 = v1,2

v̇1,2 = −x1,2 − C (v1,2 − v2,1)− C2

2
(x1,2 − x2,1) ,

(4.1)

the coupled N-H pairs (h, i):

ẋ =



ẋ1

v̇1

ṡ1

ẋ2

v̇2

ṡ2


ẋ1,2 = v1,2

v̇1,2 = −k1,2x1,2 − v1,2s1,2 − C (v1,2 − v2,1)− C2

2
(x1,2 − x2,1)

ṡ1,2 = a(v2
1,2 − 1),

(4.2)

where k1,2 = k̄ ±∆k, the damped driven pendulums (k, l):

ẋ =


φ̇1

ω̇1

φ̇2

ω̇2

 =


ω1

φ2 − sin(φ1)− d1ω1

ω2

−φ2 − d2ω2

 , (4.3)

and the pendulum driven by a Van der Pol oscillator (m):

ẋ =


φ̇

ω̇

ẋ

v̇

 =


ω

x− sin(φ)

v

−x− µ(x2 − 1)v

 . (4.4)

4.3 Coupled Nosé-Hoover oscillators

Values of the Lyapunov exponents were calculated for a specific config-

uration of coupled Nosé-Hoover oscillators, while varying parameter C

which indicates the strength of the coupling. In total calculations were

performed for 25 + 1 equally spaced values of the coupling parameter C

between 0 and 0.1. The results are visible in Figure 4.7. The other pa-

rameters where a = 3, k̄ = 1, and ∆k = 0.02, were a is chosen in order to
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Figure 4.7: A plot of the Lyapunov
exponents of instances of two coupled
Nosé-Hoover oscillators as in Eq. 4.2
for 25 + 1 equally spaced values of
the coupling parameter C between
0 and 0.1. The value 0 on the y-axis
is indicated by a blue dashed line to
separate the positive, negative and
(approximately) zero exponents. The
other parameters that were chosen
are a = 3, k̄ = 1, and ∆k = 0.02,
and the trajectory length is 4000 time
units.

maximize the chaotic behavior, and ∆k is nonzero so that the coupled os-

cillators are slightly dissimilar, as in [12]. The trajectory length used was

4000 time units, as longer trajectories would take too much in the calcula-

tions, and none of the other systems have problems converging before that

time.
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Figure 4.8: A plot of the sum of
the Lyapunov exponents of the
coupled Nosé-Hoover oscillators in
Figure 4.7. The blue line indicates
sums of the numerical exponents,
while the red dashed line shows
the theoretically expected value of
λ+ = trace(J) = −2C. The λ+-errors
are also plotted but too small to be
visible. The value 0 on the y-axis is
indicated by a light blue dashed line.

The sum of the Lyapunov exponents for these coupled oscillators is

displayed in Figure 4.8. Also displayed is the theoretical value of the sum,

which is:

λ+ = 〈trace(J)〉 =

〈
∂v̇1

∂v1
+
∂v̇2

∂v2

〉
= 2 · −C. (4.5)



CHAPTER 5

Discussion

5.1 Accuracy of the calculations

The Lyapunov spectrum algorithm gives satisfactory results. For a system

like the Lorenz system, the values seem to converge rather quickly: after

only 50 time units the overall shape of the spectrum is already visible.

For all systems, the final sum error is quite small: the relative error is

almost always on the order of 10−4, which means the sum is correct up to

three digits.

In comparison with the literature, the Loenz system also fares rea-

sonably well: the values of the calculated exponents and their sums and

those from the references differ by 10−2 at most. For the other systems,

the results are similarly accurate, except for the first configuration of

the Nosé-Hoover (NH) oscillator, which was compared with the book by

Sprott [17]. Here the values are noticeably different (their relative differ-

ence is about 0.6), though their absolute difference is still on the order of

10−2 However, the results for the other configuration of the N-H oscilla-

tor (compared with the article by Posch et. al. [21]) are more accurate,

with the maximal exponent differing by about 10−3 absolutely and 10−2

relatively.

It should be noted that the numerical values of the exponents for the

N-H oscillator are quite small in magnitude and not very stable during

the calculation (as shown by the corresponding convergence plot). It

might be the case that the matching values from Posch et. al. [21] are

more accurate (as they use about 107 time steps) than the values from

Sprott, for which the trajectory length used is not mentioned. Otherwise

it could be possible that the N-H oscillator with a = 1 actually doesn’t

have chaotic but quasiperiodic behavior, and the positive and negative

exponents go to zero in the infinite-time limit, but take very long to do so

in practice.

The sum error seems to be a well-behaved measure: for the Lorenz
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system as well as the Van der Pol oscillator it seems to follow a power

law. In the case of the Van der Pol oscillator, the oscillations in the trace

are visible in the error as well, but the overall relationship still seems

valid, especially over a long calculation. In both cases assuming a power

law

λ+(t) = atk

gives an exponent of k ≈ −1. This means the error scales approximately

as 1
t , which means making a calculation twice as long will make the sum

error twice as small. Therefore a longer calculation than the ones per-

formed will not have a significant effect on the sum error.

In the case of the Lorenz system (b), this relationship means after 50

time units we expect the sum error to be about

λ+(T ) · T
t

= 1.4 · 10−3 · 3000

50
= 8.4 · 10−2,

i.e. a relative error of 4 · 10−3. This is in agreement with the observation

that the spectrum has visibly converged after that time, and equally

agrees with the values from the literature as the final values do. This

indicates that after these first 50 time units the spectrum has ‘practically’

converged, in that the results are unlikely to converge to a value that is

more accurate for any practical purpose, as a sightly different method

of calculating the values might provide different results. Thus a good

stopping condition, i.e. way to check when the calculation is sufficiently

accurate and the results can be accepted, might be to check when the

λ+-error is smaller than 102.

The time to achieve this convergence differs per system, as it is also

determined by the constant a in the power law fit. However, this value

seems to be related to the average trace of the Jacobian, as for the Lorenz

system a = 19.59 and for the Van der Pol oscillator a = 7.705, which is

both case is on the same order as the final value of λ+1. As this can be 1 Note that, as mentioned before,
the sum-error might not indicate
convergence at all for systems with
a certain symmetry. This has been
observed in Hamiltonian systems
such as the driven pendulum, where
the sum error is always very small
(≈ 10−14). This follows from this
relationship, because when λ+ ≈ 0,
a ≈ 0 (see Table 4.3), and the power
law time dependence λ+ ∝ t−1 is
invalid.

calculated quite easily (often analytically and otherwise numerically with

quick convergence) the trajectory length needed in order to estimate the

Lyapunov exponents sufficiently well can be estimated beforehand as:

λ+(t) = atk ≈ |trace(J)|
t

≤ ε

t ≥ |trace(J)|
ε

, (5.1)

where ε is the tolerance, or desired accuracy, so in this example ε =

10−2. However, this relationship does not apply (as noted) for conserva-

tive systems where trace(J) ≈ 0. This is shown in Table 4.3, where for

the conservative systems either a = 0 or a has a seemingly arbitrary, large
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value2. 2 The difference is most likely that
the driven pendulum is instanta-
neously conservative while the N-H
oscillators are periodically conser-
vative, and thus the sum error does
shrink over time but there is no clear
power law relationship.

A zero exponent clearly appears for all the systems: there is always one

exponent whose absolute value is smaller than 10−3, except in the coupled

N-H pairs (which are the most complicated systems investigated) and in

one of the damped driven pendulums. Moreover, in each system which

is expected to show a certain symmetry, the symmetry is clearly visible,

excepting the Nosé-Hoover oscillators.

This shows that the Nosé-Hoover oscillators, while appearing simple

from their definition, are in fact tougher to simulate and evaluate cor-

rectly than the other systems. Also, while there can be much variability

in their behavior, their Lyapunov exponents remain small, as the config-

uration (f) is the most chaotic configuration known for a single oscillator

[21]. Nonetheless the (positive) Lyapunov exponents remain smaller than

10−1, which makes it difficult to distinguish the zero exponent and makes

it harder to calculate the values accurately.

5.2 Coupling the Nosé-Hoover oscillators

The effect of coupling two Nosé-Hoover oscillators as in Eq. 4.2 is shown

in Figure 4.7. Starting at C = 0, the full spectrum is simply the union

of the two 3D spectra, which are themselves very similar. Then, as the

coupling increases, it is apparent that there is no simple relationship be-

tween the coupling strength C and the Lyapunov spectrum. Some values

are ‘unlucky’ and the exponents are smaller in magnitude, indicated they

show less chaotic and more periodic behavior, while some, even large val-

ues of C are lucky and retain the chaotic behavior.

Two main trends can be spotted in Figure 4.7. First off, the negative

exponents get progressively more negative as C increases. This is because

of the effective damping that occurs when coupling oscillators: namely

the damping of the velocity difference C(v1,2 − v2,1). Additionally, the

systems start off with two (approximately) zero exponents, λ3 and λ4,

which over time split into one zero and one negative exponent. This shows

how a spectrum with a (+, +, 0, -, -, -) signature can be formed from two

systems with a (+, 0, -) signature: the effective damping causes the zero

exponents to split and the line of symmetry to fall below zero.

However, the small magnitude of the exponents makes it hard to dis-

tinguish the cases where there are two approximately zero exponents from

those where one of the two is negative. Later on, the same happens when

the originally positive λ2 nears zero. Only in a few lucky cases the dis-

tinction that there is a (+, +, 0, -, -, -) signature can be made, of which

two were included in Table 4.1 as examples: one where the zero exponents

just start to split, and one where C is close to 0.1 and yet the positive
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exponents are relatively large in magnitude.

Looking at the sum in Figure 4.8 shows the trend that would be ex-

pected, that it grows in the negative direction proportional to C. How-

ever, there are fluctuations, which indicates the behavior of the coupling

is not as simple as expected: it is not the only thing affecting the average

volume contraction. What might be happening here is that the interac-

tion with the ‘heat bath’ s is causing side-effects. After all, the velocities

have a non-constant friction −s1,2v1,2 in addition to the coupling, so the

sum of the exponents is dependent on s1,2 as well. The full equation for

the sum is:

λ+ = 〈trace(J)〉 = −2C − 〈s1〉 − 〈s2〉 . (5.2)

In the uncoupled case 〈s1,2〉 are equal to zero, leading to a sum propor-

tional to C. However, in the coupled case s1 and s2 are also indirectly

coupled through the velocities, which could produce a different result. In

Figure 4.8 the relation (5.2) above is shown to be correct, as adding the

averages of s1,2 retrieves the proportional relationship:

λ+ + 〈s1〉+ 〈s2〉 = −2C − 〈s1〉 − 〈s2〉+ 〈s1〉+ 〈s2〉 = −2C. (5.3)

5.2.1 Symmetry of the coupled spectrum

We have already seen that the nonzero average value of s1,2 leads to a

friction which affects the volume expansion and thus the Lyapunov ex-

ponents. For the sum this is visible in Figure 4.8 as when adding the

average values of s1,2 the result is nearly equal to −2C. Another question

to ask is: is the spectrum still symmetric around a negative value? This

was one of the objectives we were aiming for when choosing to couple two

conservative oscillators.
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Figure 5.1: The average of the Lya-
punov exponents for the coupled
Nosé-Hoover oscillators, whose spec-
tra are shown in Figure 4.7. The
numerical average is plotted and com-
pared with the theoretically expected
value 〈λi〉 = −C

3
, where it is assumed

that 〈s1,2〉 = 0. Subtracting the
average value of s1,2 from the average
of the exponents, gives a value that
agrees with the expected value.

If the spectrum of Lyapunov exponents is symmetric, it must be sym-

metric around its average value. Therefore it makes sense to calculate the
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average. Because the average is related to the sum, it follows that

〈λi〉 =
λ1 + λ2 + λ3 + λ4 + λ5 + λ6

6
=
λ+

6
= −C

3
− 1

6
[〈s1〉+ 〈s2〉], (5.4)

so it is equal to −C3 when the average of s1,2 is zero. This can also be

motivated from the system specification: a uniformly damped system will

have a spectrum symmetric around the value

−γ
2
,

where γ is the damping coefficient. In the case of the coupled N-H os-

cillators, we have two coupled harmonic oscillators, each damped with

coefficient C, and the two thermostats which are undamped. In other

words, out of the 6 equations, 4 of them are damped with coefficient C

while 2 are undamped. Therefore it can be argued that the ‘effective’

uniform damping on the system is:

γeff =
4

6
C =

2

3
C.

From this, it also follows that the spectrum should be symmetric around a

value

−γeff
2

= −C
3
.
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Figure 5.2: A shifted version of the
spectra of coupled Nosé-Hoover
oscillators as in Figure 4.7. The
spectra are shifted proportionally to
the respective value of 〈s1,2〉, so that
the average of the exponents agrees
with the theoretical value (a straight
line, as indicated in the plot).

For illustration purposes, in Figure 5.2, the spectra have been shifted

up by
1

6
[〈s1〉+ 〈s2〉],

so that their average is equal to −C3 , which is indicated in the plot by

a red dashed line. Here it can already be see that the spectrum is not

symmetric, even when factoring out the average influence of 〈s1,2〉, as
λ3 is much further from the average line than λ4. The asymmetry of the

spectrum is also clearly visible in Figure 5.3, where the exponents have

been shifted so that their average is zero, and the last 3 exponents have

changed sign. If the spectrum were symmetric, the pairs of exponents
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Figure 5.3: A visual check of the
possible symmetry in the spectra of
coupled Nosé-Hoover oscillators as in
Figure 4.7. The exponents have been
shifted so that their average is equal
to zero, i.e. so that the line in Figure
5.2 corresponding to the average ends
up at zero. Then the exponents below
the average have been flipped around
the symmetry axis. If the spectrum
is symmetric, the pairs of exponents
(λ1,2,3, λ6,5,4) should coincide.

should overlap. It can be seen that for small C this is somewhat the case,

but for larger C they deviate. From this it can be concluded that the

coupling of the two oscillators does not just have an unexpected effect on

the net volume expansion, it also breaks the symmetry of the Lyapunov

spectrum.
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Figure 5.4: The differences between
the pairs of exponents in Figure 5.3.
Their sum is zero (by definition),
and a positive value means the pair
is shifted in the positive direction
(i.e. the largest exponent is relatively
further from the symmetry axis),
while a negative value means the
opposite (i.e. the largest exponent
is relatively closer to the symmetry
axis).

Figure 5.5: A schematic view of
the asymmetry in the spectrum of
coupled Nosé-Hoover oscillators.
The left part of the image shows a
symmetric spectrum, while the right
part shows a typical spectrum for
this system. The exponents above the
symmetry line move closer together,
while the exponents below move
further apart.

Finally, in Figure 5.4 the differences between the symmetric pairs of

exponents are displayed, in order to show how the asymmetry is reflected

in the values of the exponents. On average, three trends are visible:

• The pair (λ1, λ6) has a mostly negative difference, which means that λ6

is relatively further from the symmetry axis than λ1.

• The pair (λ2, λ5) has an average difference around zero, which means

that λ2 and λ5 are approximately symmetric.

• The pair (λ3, λ4) has a mostly positive difference, which means that λ4

is relatively closer to the symmetry axis than λ3.

This gives us a good qualitative view of the asymmetry of the Lya-

punov spectra, as shown in Figure 5.5. The exponents above the sym-

metry line move closer together, while the exponents below move further

apart. This has the effect of making the positive exponents harder to
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distinguish and to calculate accurately. Also, it tells us that the asymme-

try is mostly reflected in the exponents largest in magnitude and those

smallest in magnitude.

5.3 The (damped) driven pendulum

For the driven pendulum, the configuration (j) which is also featured in

[17] shows clear chaotic behavior with a positive exponent of 1.638 · 10−1,

and a (+, 0, 0, -) signature. Also, the spectrum is symmetric around zero,

which makes clear that it is conservative, and it has been calculated very

accurately: the sum error 10−14 could even be called suspiciously small.

Because this system is conservative, the sum error is probably not very

meaningful, but from the convergence plot Figure B.10 in Appendix B the

individual exponents seem to be converging properly as well.

In order to see whether a system with a (+, 0, -, -) signature could also

be found (this being a 4D analog to the C. elegans spectrum), a number

of ways to introduce a negative exponent were investigated. Applying a

damping term to either the pendulum or the driving harmonic oscillator

seems to destroy the chaotic behavior of the system. When damping

the driving oscillator, this makes sense: even slightly damping it will

cause the driving force to go to zero, after which the pendulum will fall

back into periodic motion, and so the chaotic behavior persists only for a

limited time.

When damping the pendulum, this seems less apparent. The most

likely reason is that the main property of the pendulum (which distin-

guishes it qualitatively from a harmonic oscillator) is that it has the abil-

ity to ‘swing over the top’, i.e. make a full revolution without passing

through φ = 0, and the damping makes this kind of motion unlikely if the

driving force does not compensate for it. This then makes the chaotic be-

havior disappear. Also, the damping of the pendulum only seems to make

the most negative exponent more negative, and doesn’t introduce another

negative exponent, which makes sense, because the driving oscillator is

still conservative and thus still contributes two dimensions in which the

volume scaling is zero.

This makes clear that the driving oscillator should be dissipative in

some way. One configuration that has been tested is replacing the har-

monic oscillator with a Van der Pol oscillator, which in fact does intro-

duce a negative exponent belonging to the VdP oscillator, but also shows

chaotic behavior, with an even larger positive exponent than the conser-

vative case. This is most likely because the Van der Pol oscillator has a

limit cycle around radius r = 2, leading to a driving force with two times

the amplitude of F = sin(t).
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5.4 Similarity to the C. elegans Lyapunov spectrum

From the results obtained we can evaluate whether models have been

found that show a Lyapunov spectrum similar to C. elegans. The C. ele-

gans spectrum is characterised by the appearance of the (+,+, 0,−,−,−)

signature for the signs of the exponents, and a clear symmetry in the

values of the exponents.

This signature could be replicated clearly in the case of the driven

pendulum. The driving of the normally (0,0) signed pendulum changes its

spectrum into a (+,-) signed one, so that the total system has a (+,0,0,-)

signature. The driving oscillator can then be made dissipative in some

way, so that one of its exponents becomes negative, leading to a (+,0,-,-)

spectrum.

The upside of this configuration is that the effect of the driving is

clear and isolated in the two exponents that belong to the pendulum’s

motion, so that the change in the spectrum is predictable. However, the

symmetry is not maintained, as the driving is unidirectional, which means

there cannot be a global symmetry as the pendulum’s exponents do not

affect the ’driving exponents’. Thus, if the exponents for the pendulum

are (λ1, λ4) = (a,−a), the driving oscillator should be adjusted to be

(λ2, λ3) = (0,−b), with b chosen so that the full spectrum is symmetric.

However, if the spectrum is symmertic around a value -S, this symmetry

means that

λ1 + S = −(λ4 + S) (5.5)

λ2 + S = −(λ3 + S) (5.6)

λ1 + S − (λ2 + S) = λ1 − λ2 (5.7)

= a− 0 = a (5.8)

= −(λ4 + S) + (λ3 + S) (5.9)

= λ3 − λ4 (5.10)

= −b+ a = a− b, (5.11)

and so a = a − b and b = 0 = λ3, which means that for this configuration

we cannot have both a symmetric spectrum and a (+,0,-,-) signature.

For the coupled Nosé-Hoover oscillators, the difficulties are more com-

plicated. First of all, the symmetry is not conserved after coupling. This

occurs because the two thermostats s1 and s2 ‘interfere’, causing the ex-

ponents to deviate from the symmetric shape. However, a different way of

coupling the equations that takes into account the presence of these extra

thermostat variables, might be able to conserve the symmetry. For exam-

ple, this could be attempted by writing the full system in a Hamiltonian
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formulation and applying the same reasoning as in Section 2.1.6 in order

to derive theoretically symmetry-conserving coupled equations.

Nonetheless, even if a symmetry-conserving coupling is possible, there

is much variation in the lyapunov spectrum that makes it hard to say this

system is a natural fit for a (+,+,0,-,-,-) signed spectrum. This is because

there are two opposing effects at work: the coupling constrains the motion

of the system3, leading to a net dissipation, which splits the two zero 3 This has also been sighted in pre-
liminary calculations (not included
here) of the attractor (Kaplan-Yorke)
dimension of the coupled Nosé-
Hoover system, which shows the
dimension erratically decreasing from
6 to 3 as coupling is increased.

exponents into a (0,-) pair, leading to the right signature. However, if

the coupling is too strong this dissipation will dampen the already weak

chaotic behavior, which might make one of the positive exponents go to

zero or below, leading to a (+,0,0,-,-,-) or (+,0,-,-,-,-) signature. In this

sense the signature of the C. elegans spectrum does not naturally emerge

from the coupling of these systems, and while it is possible, it is also very

sensitive to the parameters of the system.

However, what is particularily clear is that this system is much more

complex than meets the eye. More research could be done into how the

thermostats interact, and how the spectrum could be coupled in a more

stable way. Also, if the source of the choatic behavior (like the pendulum

going over the top), maybe it could get clearer how to couple them in a

way that constrains them but does not destroy the chaotic component.

Finally, if a configuration of this system is obtained that clearly has the

right spectrum, it might be interesting to investigate what the behavior

looks like in phase space compared to C. elegans’ dynamics: is the motion

mostly regular with occasional ‘chaotic events’, comparable to C. elegans

moving forward psuedo-sinusoidally and suddenly turning? Or is the

behavior always slightly aperiodic but globally unvarying? The ability to

pose these kind of questions shows that the behavior of this system still

contains plenty of possibilities for further research.



CHAPTER 6

Conclusion

In order to analyse the behavior of the worm and model organism C.

elegans from a physical perspective, data about its crawling movements

has been collected and analyses on it have been performed previously

[1]. The objective of this project has been to investigate a number of

dynamical systems with origins motivated in physics or elsewhere, in

order to see whether their dynamics might resemble the dynamics of the

C. elegans locomotive system that has been reconstructed from data.

The metric by which it is determined if these dynamics resemble ea-

chother is the Lyapunov spectrum1, which gives the average expansion 1 In other words, the set of all Lya-
punov exponents for a system.

of volumes in phase space under the dynamics. From this spectrum, a

few properties of the system can be determined, most notably its energy

dissipation and whether it has a (semi-)Hamiltonian structure. The C.

elegans has been shown to have a symmetric, dissipative spectrum, which

indicates it has a Hamiltonian structure with uniform damping applied.

The systems chosen to investigate were a pair of coupled Nosé-Hoover

(N-H) oscillators, and a driven pendulum. The N-H oscillators are conser-

vative by themselves, and it has been shown that coupling them induces a

net dissipation. However, the effect on the whole spectrum is hard to pre-

dict, as the symmetry is not conserved. This means the effective damping

applied by the coupling is not uniform and should be adjusted.

The driven pendulum shows very predictable results. Applying a pe-

riodic driving force makes the spectrum of the pendulum non-zero but

symmetric around zero, which means it obtains chaotic behavior. The rest

of the spectrum is determined by the spectrum of the driving oscillator.

However, it is not possible to construct a fully symmetric spectrum in this

way while having a net damping, and so this system cannot be compared

to the dynamics of C. elegans in its current form.

In summary, the driven pendulum shows a too limited range of behav-

ior in order to show dynamics resembling those of C. elegans, and has to

be extended in some way. The coupled N-H oscillators, however, show a
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wide range of behavior which indicates they might be useful if coupled in

a different way. The first objective in such an attempt would be to find

a way of coupling them so that the net dissipation is only caused by the

coupling2. 2 Right now, a part of the dissipation
is caused by the two thermostats
interfering, which leads to unpredicat-
ble behavior.

Further research could also be done on the behavior of the coupled N-H

oscillators: what do the dynamics look like in phase space compared to

those of C. elegans? Additionally, an alternative to the (harmonically)

driven pendulum is the double pendulum, which could not be properly

investigated in this project due to technical difficulties with the system.

Further analysis might be performed to see whether the double pendulum

could also produce a qualitatively similar Lyapunov spectrum.
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APPENDIX A

Partial code for the Lyapunov

exponents algorithm

Below is the main part of the code for the Lyapunov exponent algorithm

as discussed in Section 3.2.4. Dots indicate a part of the code has been

removed for clarity.

1 def le_system_trajectory(sys, tr, dt, L=50, ...):

2 f, Df = sys

3 # Number of points in the trajectory.

4 N = tr.shape[0]

5 # Total number of decompositions.

6 M = int(np.floor((N - 1) / L)) + 1

7 # The dimension of the phase space (excluding t).

8 dim = tr.shape[1] - 1

9

10 # Use a n-paralellepiped as starting volume.

11 V = np.identity(dim)

12 # Keep track of the total sequence of Q’s.

13 Qhat = np.identity(dim)

14 # Store the current average exponents in a vector.

15 LE = np.zeros((dim,))

16 ...

17 for i in range(N):

18 # Extract the phase-space point.

19 s, t = ...

20 # Calculate flow map (takes point 1 timestep ahead, linearly).

21 J = Df(t, s)

22 M = expm(dt * J, order=4) # np.identity(dim) + dt * J + mpow(dt * J, 2)/2

23 # + mpow(dt * J, 3)/6 + mpow(dt * J, 4)/24
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24 # Apply flow to volume.

25 V = np.dot(M, V)

26 ...

27 # Calculate exponents every L steps.

28 if i % L == 0:

29 # ’Realign’ the volume matrix to the previously stretched axes.

30 V = multi_dot([Qhat.T, V, Qhat])

31 # Seperate into rotation (Q) and stretching/shearing (R) transformation.

32 Q, R = qr_pos(V)

33 # Calculate "instantaneous" exponents as the logarithm

34 # of the diagonal of R.

35 Rdl = np.log(np.diag(R)) / L

36 # Add the instantaneous exponents to the current moving average

37 # over the trajectory.

38 m = int(i / L)

39 LE = LE + (Rdl - LE)/(m + 1)

40 ...

41 # Save the total orthonormal basis for the next iteration.

42 Qhat = np.dot(Qhat, Q)

43 # Reset the volume to an identity volume.

44 V = np.identity(dim)

45

46 # Average the exponents over time, i.e. samples (already done) * timestep.

47 LE = LE / dt

48 # Sort them for convenience.

49 sorted = np.argsort(LE)[::-1]

50 LE = LE[sorted]

51 ...

52 return LE



APPENDIX B

Convergence plots

This appendix contains convergence plots for the Lyapunov exponent

calculations for all the systems in Table 4.1. These plots show for each

exponent the difference between its value after n time steps along the

trajectory and its final value, after the algorithm has completed. The

distance to the final value is plotted logarithmically on the y-axis, and is

simply the absolute difference between the current and final value:

|λi(n)− λi(N)|.

Here N is the trajectory length given by N = T
∆t , where T is the trajec-

tory length (from Table 4.1) and ∆t = 0.04. The rapid falloff at the end

of the plots should be ignored, as the distance to the final value can get

arbitrarily close to 0 near the end of the run and so this does not tell us

anything about the accuracy of the value of the exponent.
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Figure B.1: The convergence plot
for system Lorenz system 1 with
parameters σ = 10, β = 8

3
, ρ = 10.
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Figure B.2: The convergence plot
for system Lorenz system 2 with
parameters σ = 16, β = 45.92, ρ = 4.

0 2000 4000 6000 8000 10000
Time steps along trajectory

10 6

10 5

10 4

10 3

10 2

10 1

100

Di
st

an
ce

 to
 fi

na
l v

al
ue

Van der Pol oscillator 1
1

2

Figure B.3: The convergence plot for
system Van der Pol oscillator 1 with
parameters µ = 5.
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Figure B.4: The convergence plot for
system Van der Pol oscillator 2 with
parameters µ = 0.0499922.
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Figure B.5: The convergence plot for
system Nose-Hoover oscillator 1 with
parameters a = 1.
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Figure B.6: The convergence plot for
system Nose-Hoover oscillator 2 with
parameters a = 3.
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Figure B.7: The convergence plot for
system Coupled harmonic oscillators
with parameters C = 0.05.
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Figure B.8: The convergence plot
for system Coupled N-H pair 1 with
parameters a = 3, k̄ = 1, ∆k = 0.02,

C = 0.034375.
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Figure B.9: The convergence plot
for system Coupled N-H pair 2 with
parameters a = 3, k̄ = 1, ∆k = 0.02,
C = 0.096875.
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Figure B.10: The convergence plot
for system Driven pendulum with
parameters F = sin(t).
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Figure B.11: The convergence plot
for system Driven damped pendulum
1 with parameters d1 = 0.005,
F = sin(t).
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Figure B.12: The convergence plot
for system Driven damped pendulum
2 with parameters d2 = 0.005,

F = e−0.0025t sin(t).
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Figure B.13: The convergence plot
for system Pendulum driven by Van
der Pol oscillator with parameters
µ = 0.0499922.


